Found 1516 Hypotheses across 152 Pages (0.039 seconds)
  1. Average tool complexity will be higher in larger populations than in smaller populations (2561).Kline, Michelle A. - Population size predicts technological complexity in oceania, 2010 - 7 Variables

    The capacity for cumulative cultural evolution has often been invoked to explain the great diversity of habitats occupied by humans. This theory of cultural evolution emphasizes the gradual accumulation of technologies and cultural practices over many generations, and predicts that larger populations will generate more complex cultural adaptations than smaller, isolated ones. Here, the authors investigate the marine foraging tool repertoires of 10 Oceanic societies to determine whether population size and intergroup contact affect the cultural processes by which tool kits evolve.

    Related HypothesesCite
  2. Contact will have a stronger effect on the tool repertoires of small populations than large populations (2561).Kline, Michelle A. - Population size predicts technological complexity in oceania, 2010 - 8 Variables

    The capacity for cumulative cultural evolution has often been invoked to explain the great diversity of habitats occupied by humans. This theory of cultural evolution emphasizes the gradual accumulation of technologies and cultural practices over many generations, and predicts that larger populations will generate more complex cultural adaptations than smaller, isolated ones. Here, the authors investigate the marine foraging tool repertoires of 10 Oceanic societies to determine whether population size and intergroup contact affect the cultural processes by which tool kits evolve.

    Related HypothesesCite
  3. Net primary productivity is correlated with number of specializations.Ben-Oren, Yotam - Cultural specialization as a double-edged sword: division into specialized g..., 2023 - 2 Variables

    This article presents a model of cultural evolution simulating the accumulation of tools in specialized and non-specialized populations under different demographic and environmental scenarios. The model predicts that the relationship between population size and repertoire size is nonlinear and can differ between non-specialized and specialized populations. For small population sizes, the non-specialized populations maintain knowledge better and therefore reach higher average repertoire sizes. In large populations, specialized populations can reach higher average repertoire sizes. This is because non-specialized population's total repertoire size is limited by the capacity of individuals to accumulate knowledge of different skills, while in specialized populations, each individual needs to know only a fraction of the population's repertoire. However, the model also predicts that specialized populations are more susceptible to information loss due to their subdivision of knowledge, and this can be amplified by demographic and environmental factors. The authors also use ethnographic data to analyze the relationship between population size and degree of craft specialization of societies, and how this may be influenced by ecological factors.

    Related HypothesesCite
  4. Technological complexity is positively associated with risk of resource failure (1).Collard, Mark - Risk, mobility or population size?: Drivers of technological richness among ..., 2013 - 6 Variables

    This paper builds off previous research into the effect of population size and resource risk on complexity of subsistence technology by investigating the relationship between these independent variables and total number of material items and techniques used by various western North American hunter-gatherer groups. This tally of total technological complexity is found to be insignificantly related to population size or residential mobility; however, there is a significant correlation in the expected direction between technological complexity and one measure of resource risk (mean annual temperature during driest month). Tying this finding to previous analyses of subsistence technologies, the authors theorize that environmental risk is a pervasive driver of technological ingenuity and cultural evolution.

    Related HypothesesCite
  5. Controlling for resource risk, population size will predict tool kit complexity (p. S390).Collard, Mark - Population size as an explanation for patterns in the paleolithic archaeolog..., 2013 - 3 Variables

    Previous studies have yielded contradictory results on the relationship between population size and cultural evolution. Focusing on tool complexity these authors introduce the risk of resource failure as a possible confounding variable. They conclude that population does not predict tool kit complexity when controlling on other factors. There were significant correlations between tool kit complexity and some of the resource measures.

    Related HypothesesCite
  6. Toolkit complexity and diversity will be positively associated with risk of resource failure (252).Collard, Mark - Niche construction and the toolkits of hunter–gatherers and food producers, 2011 - 4 Variables

    The researchers test the relationship between toolkit complexity and diversity as defined by Oswalt (1973) and environmental and demographic variables. Neither population size nor risk of resource failure predict toolkit characteristics among all groups in the sample. However, population size is significantly positively correlated with toolkit diversity and complexity among food-producers, whereas environmental factors indicating risk of resource failure are significantly positively correlated among hunter-gatherers. This leads the researchers to suggest that food-producers' effectiveness at niche construction is a result of their large population size, which thus has a larger effect on toolkit composition than does environmental risk relative to hunter-gatherers.

    Related HypothesesCite
  7. Greater population sizes will predict a greater number of specializations.Ben-Oren, Yotam - Cultural specialization as a double-edged sword: division into specialized g..., 2023 - 2 Variables

    This article presents a model of cultural evolution simulating the accumulation of tools in specialized and non-specialized populations under different demographic and environmental scenarios. The model predicts that the relationship between population size and repertoire size is nonlinear and can differ between non-specialized and specialized populations. For small population sizes, the non-specialized populations maintain knowledge better and therefore reach higher average repertoire sizes. In large populations, specialized populations can reach higher average repertoire sizes. This is because non-specialized population's total repertoire size is limited by the capacity of individuals to accumulate knowledge of different skills, while in specialized populations, each individual needs to know only a fraction of the population's repertoire. However, the model also predicts that specialized populations are more susceptible to information loss due to their subdivision of knowledge, and this can be amplified by demographic and environmental factors. The authors also use ethnographic data to analyze the relationship between population size and degree of craft specialization of societies, and how this may be influenced by ecological factors.

    Related HypothesesCite
  8. Sexual division of foraging labor will be positively associated with seasonality (174).Marlowe, Frank W. - Hunting and gathering: the human sexual division of foraging labor, 2007 - 2 Variables

    This article explores the sexual division of labor among foragers, focusing on resource availability and constraints on women’s foraging activities. The authors conclude that “there is a greater division of foraging labor in more seasonal habitats where less gathering is possible and more extractive, tool-based foraging is required” (191).

    Related HypothesesCite
  9. Using multivariate clustering, it is expected that patterns in human subsistence variability will be found that are consistent with the thery of "attractors" and "repellers." (9580)Ullah, Isaac I. T. - Toward a theory of punctuated subsistence change, 2015 - 6 Variables

    The authors use a comparative ethnoarchaeological model that seeks to test the applicability of Dynamical Systems Theory to modeling subsistence variation (namely the foraging-farming transition). The authors utilize the concepts of "attractors," which tend to stabilize a system, and "repellors," which tend to be destabilizing forces. Authors hope that this multidimensional approach, which assumes that several "controlling" variables disproportionately affect change within subsistence systems, will adequately model the nonlinearity and heterogeneity seen in the emergences of (and variations within) human subsistence systems throughout human history. Their model and premises regarding disproportionally-controlling variables appear to be supported.

    Related HypothesesCite
  10. Population size will be associated with toolkit richness and complexity independent of rain and effective temperature.Collard, Mark - Population size and cultural evolution in nonindustrial food-producing societies, 2013 - 2 Variables

    Seeking to resolve contradictions between previous studies, these authors conduct empirical analysis on the relationship between population size and cultural evolution. Results indicate that population size influences toolkit richness and complexity, even when proxies for risk of resource failure are introduced in the regression model. Authors speculate that the association is weaker for hunter-gatherers because those societies are more affected by risk of resource failure and have institutions that facilitate cultural evolution despite smaller population size. There also may be a threshold effect in the influence of population size on toolkit structure.

    Related HypothesesCite