Found 1538 Hypotheses across 154 Pages (0.006 seconds)
  1. The "gain from none" model (where all norms are can emerge from N, but cannot regress) will best predict the evolution of land tenure norms (314)Kushnick, Geoff - The sequential evolution of land tenure norms, 2014 - 2 Variables

    In this paper, the authors utilize phylogenetic methods to reconstruct the evolution of land tenure norms among 97 Austronesian societies. They coded these norms for each society as none (N), group (G), group-kin (K), and individual (I). After formulating various models of evolution through these various stages, they used Bayesian analysis to determine support for each. They conclude with remarks about this type of evolutionary phylogenetic research as a form of "virtual archeology."

    Related HypothesesCite
  2. The "exclusivity gain" model (an N-G-K-I trajectory) will best predict the evolution of land tenure norms (314)Kushnick, Geoff - The sequential evolution of land tenure norms, 2014 - 2 Variables

    In this paper, the authors utilize phylogenetic methods to reconstruct the evolution of land tenure norms among 97 Austronesian societies. They coded these norms for each society as none (N), group (G), group-kin (K), and individual (I). After formulating various models of evolution through these various stages, they used Bayesian analysis to determine support for each. They conclude with remarks about this type of evolutionary phylogenetic research as a form of "virtual archeology."

    Related HypothesesCite
  3. The "alternative" model (an N-I-G-K trajectory) will best predict the evolution of land tenure norms (314)Kushnick, Geoff - The sequential evolution of land tenure norms, 2014 - 2 Variables

    In this paper, the authors utilize phylogenetic methods to reconstruct the evolution of land tenure norms among 97 Austronesian societies. They coded these norms for each society as none (N), group (G), group-kin (K), and individual (I). After formulating various models of evolution through these various stages, they used Bayesian analysis to determine support for each. They conclude with remarks about this type of evolutionary phylogenetic research as a form of "virtual archeology."

    Related HypothesesCite
  4. The "unstable group" model (where all transitions are possible, except G can only emerge from N) will best predict the evolution of land tenure norms (314)Kushnick, Geoff - The sequential evolution of land tenure norms, 2014 - 2 Variables

    In this paper, the authors utilize phylogenetic methods to reconstruct the evolution of land tenure norms among 97 Austronesian societies. They coded these norms for each society as none (N), group (G), group-kin (K), and individual (I). After formulating various models of evolution through these various stages, they used Bayesian analysis to determine support for each. They conclude with remarks about this type of evolutionary phylogenetic research as a form of "virtual archeology."

    Related HypothesesCite
  5. The "full" model (where all four land tenure norms are transitioned to and from freely) will best predict the evolution of land tenure norms (314)Kushnick, Geoff - The sequential evolution of land tenure norms, 2014 - 2 Variables

    In this paper, the authors utilize phylogenetic methods to reconstruct the evolution of land tenure norms among 97 Austronesian societies. They coded these norms for each society as none (N), group (G), group-kin (K), and individual (I). After formulating various models of evolution through these various stages, they used Bayesian analysis to determine support for each. They conclude with remarks about this type of evolutionary phylogenetic research as a form of "virtual archeology."

    Related HypothesesCite
  6. The "kin-group" model (where all transitions are allowed, expect from K) will best predict the evolution of land tenure norms (314)Kushnick, Geoff - The sequential evolution of land tenure norms, 2014 - 2 Variables

    In this paper, the authors utilize phylogenetic methods to reconstruct the evolution of land tenure norms among 97 Austronesian societies. They coded these norms for each society as none (N), group (G), group-kin (K), and individual (I). After formulating various models of evolution through these various stages, they used Bayesian analysis to determine support for each. They conclude with remarks about this type of evolutionary phylogenetic research as a form of "virtual archeology."

    Related HypothesesCite
  7. The "loss for change model" (where there are free transitions to and from all forms of tenure norms with the stipulation that they pass through N) will best predict the evolution of land tenure norms (314)Kushnick, Geoff - The sequential evolution of land tenure norms, 2014 - 2 Variables

    In this paper, the authors utilize phylogenetic methods to reconstruct the evolution of land tenure norms among 97 Austronesian societies. They coded these norms for each society as none (N), group (G), group-kin (K), and individual (I). After formulating various models of evolution through these various stages, they used Bayesian analysis to determine support for each. They conclude with remarks about this type of evolutionary phylogenetic research as a form of "virtual archeology."

    Related HypothesesCite
  8. The "corporate model" (where all transitions are possible, except once K or I arise there can only be changes between them) will best predict the evolution of land tenure norms (314)Kushnick, Geoff - The sequential evolution of land tenure norms, 2014 - 2 Variables

    In this paper, the authors utilize phylogenetic methods to reconstruct the evolution of land tenure norms among 97 Austronesian societies. They coded these norms for each society as none (N), group (G), group-kin (K), and individual (I). After formulating various models of evolution through these various stages, they used Bayesian analysis to determine support for each. They conclude with remarks about this type of evolutionary phylogenetic research as a form of "virtual archeology."

    Related HypothesesCite
  9. Phylogenetic modeling indicates strong support for an evolution of land tenure norms in N-I-G-K order (see note).Kushnik, Geoff - The sequential evolution of land tenure norms, 2014 - 1 Variables

    The researchers use phylogenetic methods to map out the evolutionary trajectories of land tenure norms across 97 Austronesian societies. The analysis suggests the relevance of vertical transmission in patterning land tenure norms, rather than horizontal transmission. It also strongly supports a model along a N(none)-I(individual)-G(group)-K(kin) pathway.

    Related HypothesesCite
  10. Nearest neighbor's property system will have a positive association with property ownershipKavanaugh, Patrick - Drivers of global variation in land ownership, 2021 - 2 Variables

    Using multiple logistic regression, the researchers compare the relative strength of predictors of land ownership across 102 societies. The analysis finds significant predictive power in factors such as neighbors' property system, population density, and geography.

    Related HypothesesCite